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Embeddings of Causal Sets 
David D. Reid 

Department of Physics, University of Chicago, 5720 South Ellis Avenue, Chicago, IL 60637, USA 

Abstract. A key postulate of the causal set program is that this discrete partial order offers a 
sufficiently rich structure to make it a viable model of spacetime for quantum gravity. If the deep 
structure of spacetime is that of a causal set, then the correspondence principle (with the spacetimes 
of general relativity) must be obeyed. Therefore, one of the requirements of this program is to 
establish that the causal set structure is in fact, not just in principle, fully consistent with our 
macroscopic notion of spacetime as a Lorentzian manifold. An important component of any such 
"manifold test" is the ability to find embeddings of causal sets into Lorentzian manifolds. 
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INTRODUCTION 

Quantum gravity continues to be one of the most interesting and elusive problems in 
theoretical physics. The two most popular approaches that seek to solve this problem 
are string theory and loop quantum gravity. However, there are many other approaches 
and among these is causal sets. The causal set proposal started in the late 1970s [1, 2, 3] 
and began in earnest with the seminal paper by Bombelli et al [4]. See references [5]-
[9] for general introductions to causal sets. 

A causal set is a set C of elements xt e C, and an order relation -<, such that C = {x/, -<} 
obeys properties which make it a good discrete counterpart for continuum spacetime. 
These properties are: 

1. transitivity: if x/ -< Xj -<xj^^ xi -< x^; 
2. finitarity: the number of elements between any two ordered elements xt -< Xj is 

finite, that is, | [xi.Xj] | < ©o; 
3. noncircularity: if x/ -< Xj and Xj -< x/ => Xj = Xj 
4. reflexivity: xt -< x/ V x G C. 

Transitivity and noncircularity say that this structure is a partially ordered set, or 
poset for short. Specifically, non-circularity amounts to the exclusion of closed timelike 
curves; this condition may be relaxed in some models. The finitarity of the set ensures 
that it is discrete. The reflexivity requirement is present as a convenience to eliminate 
the ambiguity of how an event relates to itself. We can combine these statements to give 
the following definition: A causal set is a locally finite, partially ordered set. 

CPl 140, Proceedings of the National Society of Black Physicists, edited by H. M. Oluseyi 
©2009 American Institute of Physics 978-0-7354-0677-3/09/$25.00 

60 

 27 O
ctober 2023 14:36:32



THE IMPORTANCE OF EMBEDDING 

Order + Number ^ Geometry 

As discussed in any of the general references on causal sets, one of the foundational 
ideas of this approach is the fact that the causal structure of a spacetime determines 
almost all of the information needed to specify the metric [10, 11] and therefore the 
gravitational field tensor. The causal structure determines the metric up to an overall 
multiplicative function called a conformal factor. Two metrics g^y and gj^y are confor-
mally equivalent if g^y = Q^gjjy, where O is a smooth positive function. Since all con-
formally equivalent spacetimes have the same causal structure [12] the causal structure 
itself nearly specifies the metric. 

Lacking the conformal factor means that we lack the size scale of the metric that 
allows for quantitative measures of lengths and volumes. However, if spacetime is 
discrete, the volume of a region can be determined from the number of events within 
that region. Thus, the combination of causal structure (order) and discreteness (number) 
provides, in principle, enough information to construct the spacetime metric (geometry). 
There have been many investigations related to the recovery of geometric information 
from the structure of a causal set. These investigation include determining the dimension 
of the corresponding Lorentzian manifold [13, 14], the recovery of geodesies [15, 16, 
17], and topology [18]. 

The Main Conjecture of Causal Set Kinematics 

Another foundational principle at the core of the development of causal sets is what 
has been called its main conjecture, termed the Hauptvermutung [6, 19], which effec
tively says that, in the appropriate limits, a physically interesting causal set will bring 
forth all of the structure of a nearly unique spacetime manifold. Indeed, this sort of idea 
must be true if a correspondence between causal sets and macroscopic spacetimes is to 
be estabhshed. 

However, this main conjecture, as stated above, begs the following question: What 
determines whether a causal set is physically interesting? The answer, which applies to 
both the o r d e r + number ^ geomet ry principle and its underlying Hauptver
mutung, is that physically interesting causal sets are those that aiQ faithfully embeddable 
into Lorentzian manifolds. 

Faithful Embeddings 

An embedding of a causal set is a mapping of the set onto points in a Lorentzian 
manifold such that the lightcone structure of the manifold preserves the ordering of 
the set. The most probable embeddings will be uniform if the mapping corresponds to 
selecting points in the manifold via a Poisson process. When this latter requirement is 
met, the number of causal set elements mapped into any region of the manifold is directly 
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proportional to the volume of that region. Under these circumstances, the embedding is 
said to he faithful. 

In practice, to construct an embedding you need a causal set C, and a manifold ^ with 
a metric g of Lorentzian signature. Choose a coordinate system *I ' (^) for points in ^ 
and assign points to elements in the causal set by performing a mapping i//: C —> ^{^) 
such that the causal structure induced by the lightcones of g on the images of y/{C) 
preserves the ordering of the corresponding elements of C. Ideally, the algorithm by 
which the mapping iff is performed produces an embedding ilf{C) that is faithful. This 
means that, with high probability, the embedding yf{C) can be reproduced by randomly 
selecting points in ^{^) according to the Poisson distribution. 

The key point here is that everything we assume about the correspondence between 
causal sets and classical gravity, which is the foundation on which the whole program 
is built, rests upon the following idea: A dynamical process exists that will produce 
physically meaningful, faithfully embeddable causal sets. Faithful embeddings of these 
sets can be found and used to extract physical information concerning the properties of 
spacetime. Without a practical way to embed causal sets, we may never be able to place 
the approach on truly firm mathematical ground and may not even be able to find ways 
to meaningfully use causal sets as a physical model for spacetime. 

Sprinkling 

As stated above, we are most interested in embeddings that could correspond to 
selecting points in a manifold according to the Poisson distribution. Actually performing 
this selection is an excellent way to produce a faithfully embeddable causal set to use 
as a testing ground for embedding algorithms and other studies - we call this process 
a random sprinkling of points. There are a number of ways to produce a faithfully 
embeddable causal set by sprinkling. Since the present results below are restricted to 
1+1-dimensional Minkowski space, a very simple method can be used. 

It is more useful to study causal set intervals where an interval between two related 
elements /c[- ;̂̂ ] is the inclusive subset /c[.:«,z] — {yi\x -< >',• -< z}- If we think of ^ as a 
causal order, /c[j^,z] is the intersection of the future of x with the past of z. A Poisson 
sprinkling of Â  points into an interval of two-dimensional Minkowski space is easily 
obtained by randomly selected points in a square region defined by an origin in the 
lower-left corner (M,V) = (0,0) and the upper-right corner (M, v) = (a,a), then rotating 
that region by 45°. This rotation forms a spacetime interval I^^[x,z\ with the lower-left 
corner as the pastmost point x and the upper-right corner as the futuremost point z. This 
process is illustrated in Figure I. 

To turn this sprinkling into a faithfully embeddable causal set, use the lightcones from 
the selected points to determine which events are causally ordered and keep track of this 
information. Next, remove the manifold so that the points are no longer associated with 
any coordinates. Then relate those points that were causally ordered in the manifold 
with the order relation -< and you are left with a bare causal set - one that is known to 
be faithfully embeddable. 
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FIGURE 1. A Poisson sprinkling of 500 points into an interval of 1+1-dimensional Minkowski space. 
Panel (a) shows the points in (u, v) coordinates and panel (b) shows them after rotation to {t,x) coordinates. 

THE STATUS OF RESEARCH ON EMBEDDING CAUSAL SETS 

The study of embeddings of causal sets goes back to the early days of causal set 
research. The first embedding algorithm on record appears to be that of Bombelli 
and Meyer, see the Appendix of reference [19]. They associated an "energy" with the 
configuration of causal set elements and used simulated annealing in an attempt to 
find the minimum energy configuration. This configuration would be associated with 
an accurate embedding of the causal set. Their results were that this algorithm was 
successful at embedding some simple, small causal sets, but could not find embeddings 
of more complicated causal sets, even if they were known to be embeddable. 

Meyer [13] and Daughton [20] have studied the symmetric embeddability of the 
binomial poset. The binomial poset on N elements, B^, contains 2^ elements layered 
such that the mth layer contains (^) elements. It consists of all subsets of the Â  elements, 
including the null set. The structure of B^ is such that none of the elements on the mth 
layer are related to each other, while every element on this layer is related to every 
element on layer m + 1. The importance of this structure is that every partially ordered 
set is a subset of some binomial poset [13]. 

Meyer showed that symmetric embeddings of Bjsf do not exist in any Minkowski space 
fovN > 6. Daughton extended Meyer's work to consider curved manifolds with topology 
S^~^ X R; he found that no symmetric embeddings exist foTN>7. These results can be 
useful in many contexts. Their importance here is that one might use these facts, as a part 
of a larger embedding algorithm, to make quick decisions on whether a particular causal 
set is likely to embed into a particular spacetime. Given the very large configuration 
space that one has to search, such checks could have significant practical value. 
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For example, you can imagine a dynamics that generates a causal set for which you 
have no idea a priori if the causal set is embeddable and, if so, in what spacetime. Since 
we know that the middle two layers of ^3 is not embeddable into 1+1-dimensional 
Minkowski space but is in 2+1 dimensions [13], one can sample small regions of the 
causal set to look for this poset; if found, this suggests that it is better to abandon 1+1 
dimensions in favor of searching for embeddings in 2+1-dimensional spacetimes. 

Recently, Henson has developed an algorithm for embedding causal sets into 
Minkowski space which he has tested in 1+1 dimensions [21]. He used a two-step 
process the first of which was to employ a well-known estimator of the timelike distance 
between related elements to set coordinates for all the elements. This does not produce 
an exact embedding in that some of the relations between elements in the causal set do 
not match the causal relations between their images in the spacetime. In an attempt to 
make the embedding exact, a second step in which the previously selected coordinates 
are shifted was used. While he was not able to find an exact embedding with this 
scheme, he was able to match 99.66% of the relations on average for 10,000-element 
causal sets obtained from sprinklings. 

As is evident from the above discussion, no one has yet developed an embedding al
gorithm that successfully produces exact embeddings of reasonably complicated causal 
sets. While accomplishing exact embeddings remains a goal, it is worth noting that one 
does not expect to need truly exact embeddings at the level of fundamental theory. 

If the deep structure of spacetime is that of a causal set, then on their natural size scale, 
perhaps the Planck scale or smaller, one does not expect to have anything like a manifold. 
Trying to discern a manifold on this scale is like trying to read a computer screen on a 
scale that resolves the individual pixels that make up the letters. To discern the geometric 
structure of the letters we look at them at a significantly different scale. Similarly, we 
should require a mathematical change-of-scale to precisely associate a causal set with a 
particular manifold. This change-of-scale is called coarse-graining. Strictly speaking, it 
is a coarse grained causal set that one expects to embed into Lorentzian manifolds rather 
than every individual element of the causal set itself. 

However, it is entirely likely that, even after coarse graining, a causal set dynam
ics will impose a stochastic character on the correspondence between causal sets and 
Lorentzian manifolds. Indeed, this character is crucial if we hope to preserve local 
Lorentz invariance [22]. Thus, we must allow for a fluctuating number of causal set 
elements - it is the expected number of elements < N > that corresponds to volume. 
Given the fact that adding or subtracting elements from an embeddable causal set can 
destroy its embeddability, providing for these fluctuations seems to imply that we should 
not require exact embeddability of all causal set elements. 

A SIMPLE SEQUENTIAL SEARCH ALGORITHM: 
PRELIMINARY RESULTS 

The present calculations revive previously unpublished work along these lines and 
represents the first steps in what will likely be a long-term effort to find quick and 
effective algorithms to embed causal sets into Lorentzian manifolds. In its present form, 
the code employs an algorithm that takes causal sets formed by sprinkling into an interval 
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of 1+1-dimensional Minkowski space and attempts to embed these elements back into 
an interval of 1+1-dimensional Minkowski space. The algorithm considers each element 
of a causal set in sequence and searches for valid coordinates on which to embed the 
element. 

The most important step in constructing the embedding is selecting the time coordi
nate for an element. As in [21], the present calculations use the timelike distance estima
tor for this, but in a different way. To explain this estimator, let us first define a few terms. 
A link, :<, in a causal set is an irreducible relation; so, x,- ^ x̂^ iff ^ xy 3 x/ -< xy -< x^. 
A chain in a causal set is a set of elements for which each pair is related; for example, 
Xa ~< Xf, ~< • • • ~< x,_i -< Xj. is a chain from XQ to x .̂ A maximal chain, or path, is a chain 
consisting only of links, such as x^ ^ x̂ , ^ ••• ^ Xj_i ^ x,. Recall that the length of 
the geodesic between two causally related events gives the longest proper time between 
those events. It appears to be Myrheim [2] who first argued that the length of the longest 
maximal chain between two related elements in a causal set is the most natural analog 
for the geodesic length between two causally connected events in spacetime; where the 
length of a path is taken to be the number of links it contains. The proof of this result is 
discussed in [17]. A fast algorithm for finding this length, used in the present calcula
tions, has been provided by Sorkin [23], 

In the present calculations, faithfully embeddable causal set intervals are obtained by 
sprinkling in 1 + 1-dimensional Minkowski space as previously described. The elements 
are labelled l...A'̂  according to their time coordinates from the sprinklings. The minimal 
(xi) and maximal (x/v) elements are embedded at xi = (0,0) and x̂ r = (^,0) where T 
is determined by the rotation of the upper-right corner of the sprinkled interval in uv 
coordinates T = a\f2. Each of the remaining elements are considered sequentially in 
order of their labelling. 

A time coordinate of each x^-.-x^-x is obtained by determining the minimum time 
coordinate this element must have to be in the future of all previously embedded ele
ments in its past and comparing this value to its "ideal" time coordinate as determined 
by the length of the longest path from x\ to x^ containing that element. For example, if 
the length of the longest path that contains X32 is 15, and X32 is the 7th element in this 
path, the ideal time coordinate forx32 is 67/15. The time coordinate is chosen randomly 
near the ideal time if this time is greater than the minimum, or chosen randomly above 
the minimum if the minimum is greater. 

Once a time coordinate is chosen, the lightcones of all previously embedded elements 
are projected onto that time slice. This spacelike surface is searched for regions in which 
the point can embed with the proper relation to all previously embedded elements. If 
multiple regions are found, one is selected randomly. Once a region is selected, the 
element is embedded randomly within it. In the present version of the code, if no valid 
region is found on the selected time slice, the element is discarded. The choice to discard 
elements that won't embed is made purely for convenience. One can certainly choose to 
embed the elements anyway and use the result as an ansatz into a refinement procedure 
as in [4, 8] or to study how close two causal sets must be, the one from the sprinkling 
and the one from the embedding, in order to have similar geometric features. It is almost 
certain that some studies along these lines will be performed in the future. 

Table 1 summarizes the results of the present calculations. For each sprinkling of 
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TABLE 1. The number of elements successfully embedded 
for each sprinkling size Â . 

N Number Embedded N Number Embedded 

10 
20 
30 
40 
50 
60 
70 
80 
90 
100 

10 
20 
30 
40 
46 
56 
58 
65 
68 
79 

200 
300 
400 
500 
600 
700 
800 
900 
1000 

127 
179 
248 
265 
323 
371 
387 
455 
498 

200 400 600 800 

sprinkling size (N) 

FIGURE 2. The percentage of points successfully embedded as a function of sprinkling size. 

N elements, the code performs up to 10,000 trial embeddings of the causal set for 
10 < Â  < 500, up to 5000 trials for 500<N< 800, and 500 trials for 900 < Â  < 1000. 
The results reported in table 1 represent the largest numbers of points successfully 
embedded for each sprinkling size. For A'̂  equal to 10, 20, 30, and 40 the number of 
trials needed to achieve these exact embeddings were 3, 2, 87, and 341 respectively. 
Even though the present calculations used only small causal sets, making it difficult to 
draw conclusions, the fact that about half (or more) of the elements are embedded is 
quite promising if one considers any level of coarse-graining to be necessary. 

Figure 2 shows the percentage of points embedded versus sprinkling size. The trend 
of the data does hint at a flattening off somewhere between 40 - 50%. Perhaps this 
percentage range represents the best that the current scheme can do once the causal set 
reaches a certain degree of complexity. This will become clearer with further study. 
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(a) '' (b) / 
I * • 

-̂, 

(c) . . (d) • 

FIGURE 3. Representative examples of Poisson sprinklings and their embeddings. Panel (a) shows the 
result of sprinkling 500 points in an interval of Minkowski space and panel (b) is the resulting embedding 
of 262 of those points. Panel (c) is a sprinkling 100 points with panel (d) being an embedding of 66 of 
those points. 

One clear drawback of the current algorithm is that, other than distributing the points 
in time, little is done to make the embedding faithful. As a result, some of the embed
dings appear to have virtually no chance at being made into a faithful embedding in a 
second refinement stage for example, see panel (b) of figure 3, while other embeddings 
seem to have a chance such as in panel (d) of figure 3. A true measure of just how faithful 
an embedding is must be performed statistically. 

CONCLUDING REMARKS 

Results like those of Henson [21] and the present preliminary work seem to suggest 
that the goal of finding practical ways to embed causal sets into Lorentzian manifolds 
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is realistic and within reach. Many refinements to the work presented here are possible. 
However, the most likely fate of any sequential search algorithm is as an initial config
uration used as input for a better overall scheme. In the coming years, I hope to explore 
any number of avenues in pursuit of this goal including refinements of all the methods 
employed so far. Perhaps the most intriguing idea is to use some of the many techniques 
from information science, particularly cryptanalysis, given the significant similarities 
between the search for an embedding and codebreaking. 
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